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ABSTRACT

It has been recently reported that the electrical charge in
a semiconductive carbon nanotube is not evenly distributed,

but is divided into charge "islands [1,2]." A clear
understanding of tunneling phenomena can be useful to
elucidate the mechanism for electrical conduction in

nanotubes. This paper represents the first attempt to shed
light on the aforementioned phenomenon through viewing
tunneling as a natural consequence of "discrete

trajectories." The relevance of this analysis is that it may

provide further insight into the higher rate of tunneling
processes, which makes tunneling devices attractive [3]. In

a situation involving particles impinging on a classically
impenetrable barrier, the result of quantum mechanics that
the probability of detecting transmitted particles falls off

exponentially is derived without wave theory. This paper
should provide a basis for calculating the charge profile

over the length of the tube so that nanoscale devices'
conductive properties may be fully exploited.

Although the number of electrons in each warp tunnel
increases from top to bottom in this figure, such an

arrangement is solely for conceptual simplicity. The
number of electrons pictured in each warp tunnel

symbolizes the number of electrons involved in the
momentum transfer to the outgoing electron in each warp

tunnel. It is assumed that the greater the involvement of
uncharged particles in the momentum transfer, the faster the

transfer will occur, owing to the greater size of the
uncharged particles.

Figure 6 shows that the uncharged particles move but
little in a chain reaction or momentum transfer, but the

electrons, being smaller, must move more to propagate the
chain reaction. When particle A, in Figure 6. is inserted into

the warp tunnel in (I), its representative exits almost
immediately. The effective distance traveled by A is on the
order of its diameter. However, when A is inserted into

warp tunnel (IlL its effective distance traveled is greater.

2.1 Model Verification Calculation

1 INTRODUCTION

This introduction serves as an outline for the paper. The

idea of the "warp tunnel" is essential for subsequent
calculations in this paper. Though it sounds futuristic, the
idea is straightforward and sound. The warp tunnel is

introduced in Figure 1. Its quantitative properties are
explored in Figure 2, which attempts to provide insight into

the higher rate of tunneling processes. Figure 3 hints at the
explanation of the charge island phenomenon, and also

provides a basis for understanding subsequent calculations.
To show the potency of this analytical model, we calculate
the transmission probability of a beam of electrons

impinging on a classically impenetrable barrier, the
scenario shown in Figure 4. Having successfully obtained

the result, we look within the analysis to obtain the
explanation for charge islands.

2 BACKGROUND AND MOTIVATION

We begin with consideration of Figure 4. Electrons

emitted from a source S impinge on a potential barrier. To
penetrate the barrier, they must tunnel a distance a while
bridging the distance r. We wish to find p(L), or the

probability of bridging the distance r while traveling only
L = r - a. In Figure 5, we visualize distance r as consisting

of warp tunnels of differing constituents. Uncharged
particles are shown as white while electrons are black.

To formalize the calculation, it is assumed that the mean

free path of an electron is d, while that of an uncharged
particle is 0. In warp tunnel (a) of Figure 5, it is presumed

that an incoming electron will travel d once it enters the

tunnel, collide with an uncharged particle, which will then
transfer that momentum via other uncharged particles to an
outgoing electron, which will exit the warp tunnel almost

immediately after the first electron entered it. As depicted
in Figure 3, such a scenario becomes increasingly
improbable as the length of the warp tunnel increases. In

warp tunnel (b) of Figure 5, since the mean free path of
uncharged particles is 0 and the current flows to the left, we

may assume that the electron inside the tunnel is flushed to
the right of its adjacent uncharged particle on its left. That

electron then having a mean free path of d has to its
immediate right a distance d of intervening space separating
it from the next uncharged particle in the tunnel. So the

incoming electron travels a distance d once it enters the
tube, transfers its momentum to the uncharged particles,

which cause the middle electron to travel through a distance
d, which was to its right. It collides with uncharged

particles, which cause an electron to be ejected from the
warp tunnel. The amount of time it takes to eject an electron

after one has entered in warp tunnel (b) is about twice that
in warp tunnel (a). A convenient abstraction is to regard an
electron entering a tunnel as appearing for a few instants,

disappearing, and reappearing at a point further downstream
the tunnel. The more "appearances" an electron makes in a

tunnel, the longer its trip through the tunnel. Here enters the
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notionof a "discretetrajectory.'"Theelectrondoesnot
travelcontinuouslythroughthe tube,but successively
appearsat subsequentpointsin the tube and disappears
between those points.

In Figure 5, i - I electron mean free path domains are
evenly distributed throughout the warp tunnel. This

assumption is true on average. For a warp tunnel with
L = i d, we calculate p(L) as follows. To choose i - 1

domains out of the interval [-r,0] as free path positions for
the i - 1 electrons, we recognize that the number of points
from which to choose is n = r/d. The number of ways of

obtaining a warp tunnel with L = i d. is n (n - 1) (n - 2)
...In - ti - 2)t = n!/(n - (i - 1))! We use Stirting's Formula

to simplify.

p(L) o_ i/(n- (i - 1))!

p(L) _ e -[_n- i+2!+in i+_Lnln-i+21]

L = i d _ i = L/d, n- i = (r- L)/d.

p(L) o_ G" e kt.

The probability of detecting electrons on the other side of
the barrier requires L = r - a, and is given by:

p(L) _ e Ia/d+Ia/d+%)Ln_a/d+2)l

If a/d >> 1, p(L) ---)0 very, quickly, but if a/d = 1,

p(L) = G e -k"=,

which falls off exponentially with increasing barrier width

a. G and the k are independent of r.

3 MODEL EXPLOITATION

The calculation of the charge separation is lengthy and
involved. Consequently, only general remarks, an outline

of the calculation and reporting of those results appear here.
The idea behind charge islands is closely associated with

that of mean free path. A free-floating electron travels by a
certain average amount before it collides with another
particle, possibly dislodging an electron and imparting it

with its motion. The electron need not directly bump into
another electron though. It may transfer its motion by

bumping into several intervening neutral particles.
Tunneling viewed in this light is to induce the motion of a

distinct, yet otherwise indistinguishable, particle indirectly
via intervening, and possibly different, particles--much in
the same way as making a combination shot in pool.

Charge islands are formed at regular intervals due to the
chain-reaction creation of charged particles a certain mean

distance from an immediately upstream impulse due to the
indirect motion of charged particles there. We may think of

a length L nanotube as a warp tunnel containing i electron
islands. These islands will be evenly spaced on average. In

a nanoscale metallic conductor, the spacing of the charge
islands is so close that the charge appears to be uniformly
distributed. However, in a nanoscale semiconductor, the

spacing of charge islands increases, revealing charge

granularity.

3.1 Spacing Calculation Outline

Since charge is segregated into islands, to model this
circuit, an appropriate technique seems to be that of the

series RC circuit. A capacitor plate represents a charge
island; the spacing between the plates of the capacitor

represents the neutral gaps between adjacent charge islands.

The capacitors are modeled as having equal capacitance
while R represents the internal resistance of the circuit.
Ordinarily, we would not expect a capacitor to conduct a

DC current, but if the plate spacing is sufficiently close a
tunneling current will flow in the same way that electrons

will pass through the barrier shown in Figure 4 if a is small
enough. When tunneling is viewed in this new light, a

tunneling current can readily transmit through 40 nm
barriers.

Consider the warp tunnel in the top of Figure 1.
Ignoring its coloring, let the particle entering the tunnel be a

photon emitted by an electron, not displayed, to its left.
Assume that the warp tunnel spans a barrier of width a.

The particle emerging from the right side of the warp tunnel
may be a photon that will be absorbed by an electron, not
displayed, on the right side of the barrier. The outgoing

photon thereby imparts that electron with the motion
originally possessed by the other electron on the left side of
the barrier. In these calculations, it is assumed that the

photon has a width, denoted It, directly proportional to its
energy or frequency. The proportionality constant is derived

from physical constants.
Assuming the warp tunnel in Figure 1 is full, the

entering photon need only move into the tunnel an amount
It when a representative photon will move out of the tunnel.

The electron, which originally emitted the photon, has
effectively bridged the distance across the barrier by

"traveling" only a distance It << a. The effective length of
the barrier is only It(f), or the width of the photon of
frequency f perpetuating the motion. This analysis explains

both the optical and quantum mechanical barrier
penetration phenomena shown in Figure 7. In general, it is

not the selfsame electron that impinges on the barrier in
Figure 7.a that emerges on the other side. Likewise, it is

not the selfsame photon that enters the prism on the left that
is detected beyond the prism on the right.

This model allows one to conclude that the effective

length of the barrier may be given by the width, It(f), of a
photon within the barrier. To find the probability
distribution function, f(L), of the length of the barrier, we

use the Planck distribution function, which gives the

thermal average number of photons in a single mode of
frequency. For the temperature variable, we use room

temperature. The majority of the frequencies are smaller
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thanthatof visiblelight;hence,f(L) o_ l/L, where L is a
function of frequency.

We return now to our classical RC circuit model. When

the power is turned on in a classical DC RC circuit, we

obtain a transient solution: a current that exponentially
decays in time. However, if the capacitor plate spacing is
not fixed, but is exponentially decreasing with increasing

time, we find that the current through the capacitor is

essentially constant and inversely exponentially depends on
the original plate spacing. The probability distribution
function, g(L), of the length L between the capacitor plates,

or the plate spacing, must give g(L) o_ 1/L to explain a plate
spacing that exponentially decays with time. This

remarkable and highly convincing result shows that
harmony may be obtained between standard tunneling

current formulae and that predicted by DC RC circuit
analysis by assuming that the tunneled current follows a

discrete trajectory across the barrier.
Detailed calculations were performed to obtain the

coefficient of time in the decreasing exponential factor
involved in the plate spacing of the capacitor. This value,

along with the internal resistance of the circuit, is needed to
resolve the formula for the tunneling current through the

nanotube circuit or the tunneling resistance of the nanotube.

This model reasonably predicts the charge separation

contingent on one measurement, which was not reported in
the literature discussing this phenomenon: the internal
resistance of the circuit when the semiconducting nanotube

is short-circuited by a metallic nanotube or another
extremely low resistance shunt. So, if the power supply

were shut off, and the two nanotube terminals, gold in one

test and platinum in another, were short-circuited by an
extremely low resistance shunt and a highly sensitive
ohmmeter were placed in series, one lead at the positive

terminal of the power supply and one at the negative
terminal of the power supply, the resistance, R, that the
ohmmeter would read for the two scenarios reported in

[2]--keeping all things constant such as temperature, the

length of the tubes, the length and composition of the leads
to the tubes, and identical final charge spacing--is needed.

An equivalence is established which allows calculation

of the charge separation based on traditional circuit
parameters yielded readily from macroscopic measurements

and the literature. We equate the tunneling resistance of the
entire nanotube with no islands at t = 0 when the power

supply is switched on to that which would result from an
arbitrary number n of charge islands which are manifested

at t > 0. Solving for n yields the number of charge islands,
which the model says should be evenly spaced. Knowledge
of the length of the nanotube gives the separation of the

charge islands. The charge separation for various R has
been calculated and is presented below:

4 RESULTS

Results are given in the form: (R in Ohms, charge

island spacing in nm). For the 650 nm tube, (0.0001270,
37.7), (0.0001316, 42.6), and (0.0001292, 40). For the 750

nm tube, (0.0001370, 34.4), (0.0001408, 37.82), and

(0.0001389, 36). These resistances seem in range. They

are just what one would expect of the resistances of the
leads in these experiments.

5 REMARKS

A general observation about tunneling is that as the

mass or equivalent energy of a tunneled particle decreases,

the greater its transmission probability. When we apply this
analysis to the optical experiment in Figure 7, we see that d
is on the order of the wavelength of the incident light.

Observe that lower frequency electromagnetic radiation has
greater penetrating ability, which also may be related to the

size of its photons. As a final comment, a standing wave
may be thought of as existing inside the potential barrier in

Figure 4. Analogously, this "island," phenomenon may
also exist on a macroscopic scale and may be manifested

with light in microwave ovens, which often do not heat
food uniformly, but leave hot and cold spots in food.

6 CONCLUSIONS

A theoretical framework was introduced to better

understand tunneling. It was successfully applied to
determine the transmission probability of a stream of

electrons incident on a potential barrier. An appeal was

made to the established model to help explain the reported
phenomenon of charge separation in carbon nanotubes.

Calculations have been performed which show that
while to calculate the capacitance above the nanoscale, the

plate spacing d(t) of a capacitor should be a fixed constant,
independent of time, at the nanoscale, d(t) rapidly decreases
as a function of time in accordance with the probability
distribution functiorr--predicted by this theory---of the

lengths of the discrete trajectories of electrons bridging the
gap of the capacitor. When this calculation is performed,

an equation--identical in form to that of Giaever--yielding
the current through the circuit as an inverse exponential

function of the original plate spacing of the capacitor is
obtained. This equation is then used to obtain the spacing

of the charge islands. The fact that the classical equations
for a series RC circuit can still be utilized on the nanoscale

by assuming the plate spacing of the capacitor is shrinking

by a function of time which is predicted by this theory is
strong proof alone that this theory is sound.

General remarks about tunneling with light and

electrons were made with the implication that the

phenomenon of tunneling is more ubiquitous than perhaps
generally thought. The theoretical model seems accurate

and was inspired by a more general computer program
written by the author.
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The elapsed time to push a particle into the warp tunnel

is the amount of tinre it lakes tbr "it" to completely

clnel'_C at tile other end, independent of the length

ot'the ttmnel.

Cutaway View of Warp "lunnel
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Figure 1' The warp tunnel.
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Figure 7: Optical and quantum mechanical tunneling.
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